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' Bayesian networks (BN) have many desirable properties for decision-making in healthcare, i i Proposed model: neural understudy (NU) of |
. but their practical adoption is limited due to their inability to deal with data inadequacies. | BN to approximate reasoning capabilities :
. Neural networks (NN) have their own potential, but lack interpretability. 1 1. Trained on discrete data samples to infer |
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mm=m) Combine strengths of both approaches

» Model is tasked to predict P(X3|X; = x1,, X, = x91)

Teach model to ignore Y (X) given X
(Y) by randomly corrupting Y (X)
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i Property 1: Train NU to infer conditional probabilities | Property 2: Incorporate causal structure :
|
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| o o neural understudy of BN A DAG describes independence relations
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| For given £ and T find IR such that... :
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' Example: model receives random sample {X; = X;5, X, = Xoq, X3 = X35} from training set | ((XIUC) =& i
i - Random mask divides variables into evidence £ = {X;, X,} and targets 7 = {X,} OR and :
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Minimize training loss £/ = mz —log p;; , withp;; predicted prob for target class j of X; !
X;€T
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. Ground-truth o . |
: — ——— : : | A\(g..MAE across 10 randpm seedg (used to sample training set + RQ1 * Performanc? Of neural :
| @ @ w o wg | e " : : 020 initialize NN) per sample size, shading represents 95% conf. interval understudy NN is able to
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| \‘ 1 g 010 RQ2: Training NN with causal
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| ‘ a understudy with independence
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| I " results in similar performance !
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! ”é%)\ @%Q @%Q = compared to BN counterpart. |
: \_ ) \ J \_ J : : 5 modifieq DAGg were constrgcted by removing one e.d.ge at a time, :
| l x \ 11 each configuration was run with 10 seeds for 100 training samples |
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