iDLab innec

Prior Knowledge Injection into Deep Learning Models Predicting Gene Expression from Whole Slide Images

Max Hallemeesch, Marija Pizurica, Paloma Rabaey, Olivier Gevaert, Thomas Demeester, Kathleen Marchal

Problem Statement

FACULTY OF ENGINEERING

AND ARCHITECTURE

Recent advances in Deep Learning allow to predict molecular information from morphological features within Whole Slide Images (WSIs). While promising, **current methods lack the robustness** to fully replace direct sequencing.

Goal

 $\widehat{\blacksquare}$

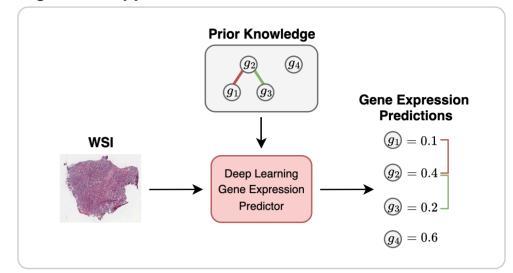
GHENT UNIVERSITY

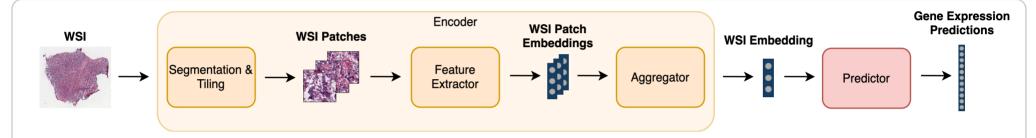
Ш

Here we aim to improve existing methods by introducing a **model-agnostic framework that allows to inject prior knowledge on gene-gene interactions** into Deep Learning architectures.

General Workflow Gene Expression Prediction

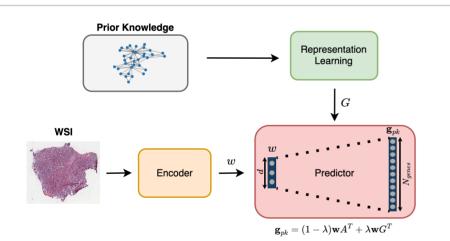
High Level Approach





General workflow of predicting gene expression from Whole Slide Images. First, the WSI is processed by an encoder, which extracts patches, their corresponding features, and aggregates them into a single WSI embedding. Then, a predictor transforms the embedding into expression predictions for 25,761 genes. We evaluate our model-agnostic framework by considering two feature extractors (CTrans (ctr) and UNI) and three aggregators (MLP, Transformer (tf) and SummaryMixing (smx)).

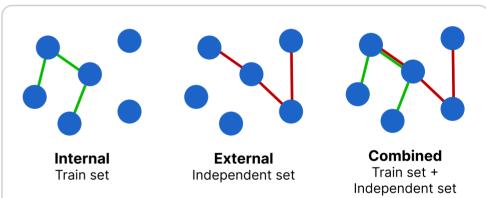
Framework Architecture



Overview of the framework. First, we transform prior knowledge (genegene interaction network) into gene embeddings *G* using a representation learning technique. The Encoder transforms the WSI into an embedding **w**. We then inject the gene embeddings into the Predictor by linearly transforming **w** into gene predictions \mathbf{g}_{pk} using a weighted sum of the linear predictor layer *A*, and the gene embeddings *G*. Hyperparameter λ controls the effect of prior knowledge.

Representation Learning

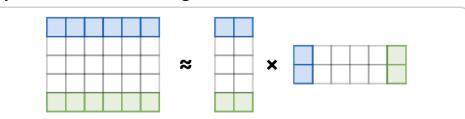
Prior Knowledge Sources



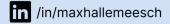
In our research, we exploit gene co-expression as prior knowledge. We define a pair of genes (i, j) to be co-expressed if the Pearson correlation R_{ij} between their respective expression levels (p_i, p_j) exceeds a threshold. We consider three sources of prior knowledge: internal (TCGA-BRCA), external (Cancer Gene Neighborhood of MsigDB) and combined.

Evaluation

TCGA	No PK	External	Internal	Combined
ctr_mlp	21,233	22,225(0.9)	$22,278(0.9)$ \uparrow 1,045	$22,160(0.9)$ \uparrow 927
ctr_tf	19,155	$21,647(0.9)$ $\uparrow 2,429$	$20,618(0.2)$ $\uparrow 1,463$	$20,548(0.8)$ $\uparrow 1,393$
ctr_smx	20,945	$22,564(0.9)$ $\uparrow 1,619$	$21,451(0.5)$ $\uparrow 506$	$21,944(0.5)$ $\uparrow 999$
uni_mlp	21,721	$22,666(0.8)$ $\uparrow 945$	$22,802(0.8)$ $\uparrow 1,081$	23 , 214 (0.9) 1 ,493
uni_tf	22, 124	$22,461(0.2)$ $\uparrow 337$	$22,645(0.1)$ $\uparrow 521$	$22,597(0.1)$ $\uparrow 473$
uni_smx	22,997	23 , 578 (0.5) † 581	23 , 732 (0.1) ↑ 735	23 , 162 (0.9) † 165



Each prior knowledge co-expression graph can be represented by an adjacency matrix. We compress this high-dimensional information into low-dimensional gene embeddings by employing Nonnegative Matrix Factorization (NMF), which minimizes the Frobenius Norm.



Max@hallemeesch.net

github.com/maxhallemeesch/PRALINE

CPTAC	No PK	External	Internal	Combined
ctr_mlp	16,936	16, 313 ₄₆₂₃	18, 116 1,180	$17,363_{127}$
ctr_tf	15,677	$15,146 \downarrow 531$	$14,983\downarrow_{694}$	$14,386 \downarrow 1,291$
ctr_smx	15,714	16,682 1968	$15,731 \uparrow 17$	$15,753_{139}$
uni_mlp	15,560	$16,106 \uparrow 546$	$16,045_{1485}$	$15,784_{224}$
uni_tf	14,705	15,648 1763	15,469 + 764	15,400 1695
uni_smx	16,952	$17,280_{1328}$	17 , 091 ↑139	$16,981_{29}$

We evaluated the number of significantly predicted genes across 18 experiments, including three sources of prior knowledge and six deep learning architectures, on both TCGA-BRCA (upper table) and CPTAC-BRCA (lower table). Across 14 experiments we observed an increase in the number of significant genes on both TCGA and CPTAC, demonstrating an enhanced generalization performance.